Beneficial effects of Urtica dioica on scopolamine-induced memory impairment in rats: protection against acetylcholinesterase activity and neuronal oxidative damage

Simagol Ghasemi, Malihe Moradzadeh, Mahmoud Hosseini, Farimah Beheshti & Hamid Reza Sadeghnia

To cite this article: Simagol Ghasemi, Malihe Moradzadeh, Mahmoud Hosseini, Farimah Beheshti & Hamid Reza Sadeghnia (2018): Beneficial effects of Urtica dioica on scopolamine-induced memory impairment in rats: protection against acetylcholinesterase activity and neuronal oxidative damage, Drug and Chemical Toxicology, DOI: 10.1080/01480545.2018.1463238

To link to this article: https://doi.org/10.1080/01480545.2018.1463238

Published online: 10 May 2018.

Submit your article to this journal

View related articles

View Crossmark data
Beneficial effects of *Urtica dioica* on scopolamine-induced memory impairment in rats: protection against acetylcholinesterase activity and neuronal oxidative damage

Simagol Ghasemi\(^a\), Malihe Moradzadeh\(^{b,c}\)\(^{a*}\), Mahmoud Hosseini\(^b\), Farimah Beheshti\(^{d,e}\) and Hamid Reza Sadeghnia\(^f\)

\(^a\)Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; \(^b\)Department of New Sciences and Technology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; \(^c\)Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran; \(^d\)Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; \(^e\)Department of Basic Science and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; \(^f\)Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran

ABSTRACT

This study was conducted to investigate protective effects of *Urtica dioica* extract on acetylcholinesterase (AChE) activity and the oxidative damage of brain tissues in scopolamine-induced memory impairment model. The rats were treated with (1) saline (control), (2) scopolamine, and (3–5) the plant extract (20, 50, or 100 mg/kg) before scopolamine. The traveled distance and the latency to find the platform in Morris water maze (MWM) by scopolamine-treated group were longer while the time spent in target quadrant was shorter than those of the control. Scopolamine decreased the latency to enter the dark in passive avoidance test. Besides, it also increased AChE activity and malondialdehyde (MDA) concentration in the hippocampal and cortical tissues while decreased thiols content and superoxide dismutase (SOD) and catalase (CAT) activities in the brain (\(p < 0.01\)–\(p < 0.001\)). Treatment by the extract reversed all the effects of scopolamine (\(p < 0.05\)–\(p < 0.001\)). According to the results of present study, the beneficial effects of *U. dioica* on memory can be attributed to its protective effects on oxidative damage of brain tissue and AChE activity.

1. Introduction

Alzheimer’s disease (AD), as a major cause of dementia in the elderly population, is an irreversible and progressive neurodegenerative disorder with a wide range of behavioral disturbances (Querfurth and LaFerla 2010). It is estimated that the number of world’s population with dementia will increase by 29.9% from 2005 to 2040 (Ferri et al. 2006).

Brain tissues oxidative injury has a well-established role in the pathogenesis of different central nervous system (CNS) disorders and neurobehavioral diseases including AD (Qureshi et al. 2004, Sharma et al. 2009). CNS tissues have a high content of fatty acids (Halliwell 1992), making them liable to oxidative damages (Frölich and Riederer 1995, Qureshi et al. 2004).

Cholinergic system has a critical role in learning and memory. Cholinergic system dysfunction has shown a role in the etiology of aging-related cognitive disorders and senile dementia (Schliebs and Arendt 2011). Scopolamine, a muscarinic antagonist drug, induces memory impairment symptoms similar to AD and dementia (Azizi-Malekabadi et al. 2012). Recently, it has been shown that scopolamine-induced memory impairment is associated with an oxidative stress status in the brain tissues (Fan et al. 2005, Lee et al. 2009).

Antioxidants show beneficial effects on neurological activities (Harrison et al. 2009a, 2009b, Harrison and May 2009). Several studies show that sufficient amounts of antioxidants can enhance cognitive execution (Harrison et al. 2009a, 2009b, Harrison and May 2009). It is also suggested that the antioxidants might make prophylactic effects against CNS diseases. For example, blueberry extract not only enhances memory function but also inhibits acetylcholinesterase (AChE) activity, which is a synaptic enzyme involved in the etiology of the AD. AChE inhibition is one of the mechanisms behind protective effects of AD medicine, such as tacrine, donepezil, and rivastigmine (Kamat et al. 2008).

Urtica dioica (stinging nettle), a medicinal plant distinguished by stinging hairs, grows in numerous countries (Kavalali et al. 2003). Traditionally, all parts of the plant are used to treat nasal and menstrual hemorrhage, rheumatic pain, anemia, nephritis, hematuria, jaundice, menorrhagia, and diarrhea. Also, *U. dioica* shows some effects such as blood purification and diuretic properties and some therapeutical effects on diabetes, atherosclerosis, cardiovascular diseases, and prostate cancer (Konrad et al. 2000). Chemical analyzes show that *U. dioica* extract contains iron, vitamins such as A, B, and B12, and other compounds such as flavonoids, carotenoids, thymol, quercetin, carvacrol, salicylic acid,
and other compounds such as acetylcholine and serotonin (Wessler et al. 2001, Nahata and Dixit 2012, Otles and Yalcin 2012). Carvacrol shows a protective impact against cerebral ischemia/reperfusion damage (Yu et al. 2012) while modifying dopamine and serotonin concentration in the prefrontal cortex and hippocampus (Hornick et al. 2011). Urtica dioica extract has been reported to improve spatial and associative memory dysfunction associated with chronic diabetes (Patel and Udayabanu 2013). The aim of present study was, the possible protective effect of a hydroalcoholic extract of U. dioica on scopolamine-induced memory impairment in rats, highlighting the effects on AChE activity and the brain tissues oxidative stress as possible mechanisms of action.

2. Materials and methods
2.1. Preparing the plant extract

Aerial parts of U. dioica were gathered from Mashhad (Iran) area and confirmed by botanists. To provide hydro-alcoholic extract, the ground plant (50 g) was mixed with ethanol (50%) and soaked for 48 h. Finally, it was filtered to separate the solution by using a paper filter. To remove the solvent, a rotary vacuum evaporator was used (Naghibi et al. 2012).

2.1.1. Animals and the experimental protocol

Male Wistar rats (200–240 g, 2 months old) were used in this investigation. The rats were maintained at standard conditions including 22 ± 2 °C and a periodic light/dark (light ON at 7 AM) condition. The animals had ad libitum access to the food and water. Animal examinations were carried out by the procedures approved by the Committee on Animal Research of Mashhad University of Medical Sciences (Ethical approval number: IR.MUMS.REC.1395.152). They were grouped as follows (n = 8–10 in each): (1) Control group: the animals received saline (2 ml/kg, daily), (2) Scopolamine (Sco) group: the animals received saline during two weeks and then were injected by scopolamine (1.5 mg/kg dissolved in saline) injection (intraperitoneally, IP) (Sigma Chemical Co) 30 min before Morris water maze (MWM) test. (3–5) the treatment groups: the animals were daily treated with 20 (Urtica 20-Sco), 50 (Urtica 50-Sco), or 100 mg/kg (Urtica 100-Sco) of U. dioica extract IP for two weeks. Finally, scopolamine was injected before each trial in MWM. Treatments were similarly carried out for passive avoidance (PA) test, except for scopolamine that was injected 30 min before retention trials.

2.2. Morris water maze apparatus and procedures

In order to carry out the MWM test, a round dark pool (136 cm diameter and 60 cm deep) was used. Water with 23–24 °C temperature was used to fill the pool up to 30 cm. A round platform (10 cm distance across, 28 cm high) was set inside the pool and submerged around 2 cm underneath the surface of the water in the center of the southwest quadrant. Some posters and other objects such as computer were put around the pool as visual cues. All examination sessions were recorded by a camcorder put simply over the focal point of the maze. Prior to each investigation, each rat was accustomed to the maze for 30 s without the platform. Then, the rats did four trials every day for a 5-day period. The trials were started by releasing the rats into the water. The release directions including North (N), East (E), South (S), and West (W) were selected randomly. The rats were then allowed to search for the hidden platform inside the pool. If the rat was able to find the platform during 60 s, it was permitted to remain on it for 20 s; otherwise, it was helped by the experimenter to find the hidden platform. The rat was then returned to the cage after drying. Twenty-four hours later, the platform was removed, and a probe test was carried out. The time spent and the traveled path in the target (Q1) and non-target (Q2–Q4) quadrants were compared between groups (Abareshi et al. 2012, Jamialahmadi et al. 2013). Each behavioral test was conducted within a time range of 4:00 to 6:00 PM. The time latency to find the platform and the length of the swimming way was recorded.

2.3. Passive avoidance apparatus and procedures

A passive avoidance (PA) apparatus (Borjsanat, Tehran, Iran) was utilized to evaluate PA learning. The apparatus included two compartments each containing a grid floor. One of the compartments was light while the other was dark. Additionally, there was a small gate between the compartments. On days 1 and 2, the animals were accustomed to the apparatus. On day 3, the rats were located inside the light-room, facing away from the darkroom and the time elapsed to enter the dark was recorded. The rats received an electrical shock (2 mA, 2 s duration) when they were completely entered the dark room. They were then returned to their cages. One, 24, and 72 h later, the retention phases were done. The rats were located inside the light room of the apparatus, the gate was opened, and the time elapsed to enter the dark was recorded. Also, at the retention phases, the gate of the apparatus was opened and the rats were allowed to move between the light and dark rooms during 300 s and the time spent by the animals in both the dark and the light rooms were recorded.

2.4. Biochemical assessment

In this step, the animals were sacrificed. Cerebral cortex and hippocampus were removed and homogenized in phosphate-buffered saline (PBS) to provide a 10% homogenate (0.1 g tissue was added 1 ml PBS). To prepare PBS, 0.9 g NaCl (sodium chloride) + 0.071 g Na2HPO4 (disodium hydrogen phosphate) was added to 100 ml distilled water (pH = 7.4).

To measure AChE activity, Elman method described in (Hosseini et al. 2015) was used. Briefly, the supernatant (40 μl) was mixed with a solution containing PBS (2.55 ml) and dithiobisnitrobenzoic acid (DTNB; 0.1 ml of 10 mM) and incubated for 5 min at 37 °C. The absorbance of the solution was read at 412 nm. Next, 0.02 ml of 75 mM acetylthiocholine was added to the mixture and incubated at 37 °C for 5 min. The difference of the absorbance during 5 min was noted.
AChE activity was calculated and expressed as nmol/min/mg protein.

To measure MDA levels, 2 ml of TBA (thiobarbituric acid)/TCA (trichloroacetic acid)/HCL (hydrochloric acid) reagent was mixed with 1 ml of brain tissue homogenate and heated in a boiling water bath. After 40 min, the samples were removed from the bath and allowed to reach the room temperature. The samples were centrifuged (10 min) and the supernatants were separated. The absorbance of the samples was determined at 535 nm. The MDA concentration was calculated using a formula described in (Hosseini et al. 2013).

Total thiol contents were determined using DTNB, which reacts with thiol groups and yields a yellow solution. To provide Tris-EDTA (ethylenediaminetetraacetic acid) buffer 0.05 g EDTA + 3 g Tris was added to 100 ml distilled water. To measure thiol content, the supernatants of the samples (50 µl) was mixed with Tris-EDTA buffer (pH = 8.6). The absorbance was read at 412 nm (A1). DTNB (20 µl) was then added to the mentioned mixture. The samples were kept at room temperature. After 15 min, the absorbance of the samples was read again (A2). The absorbance of DTNB was read and considered as a blank (B). The brain tissues total thiol content was calculated using a formula described in (Hosseini et al. 2013).

Superoxide dismutase (SOD) activity was measured by a procedure described in (Madesh and Balasubramanian 1998). This protocol is a colorimetric assay based on the production of superoxide by pyrogallol auto-oxidation and inhibition of superoxide-dependent reduction of the tetrazolium dye to its formazan by SOD. The colorimetric changes were measured at 570 nm. One unit of SOD activity was defined as the amount of enzyme causing 50% inhibition in the tetrazolium dye reduction rate.

CAT activity was measured based on the method described in (Aebi 1984). This essay is principally based on the determination of the rate constant k (dimension: s⁻¹, k) of hydrogen peroxide decomposition. 50 µl of brain tissue homogenate was added to a cuvette containing 1 ml of 30 mM H₂O₂. Catalase activity was measured at 240 nm for 1 min using a spectrophotometer.

The rate constant of the enzyme was determined by measuring the drop in absorbance at 240 nm per minute (Abareshi et al. 2012).

2.5. Statistical analysis

All data were expressed as means±SEM. SPSS software version 11.5 was used to evaluate the obtained data. The data from different treatment groups were compared using one-way ANOVA followed by Tukey’s post hoc comparisons test. Differences were considered statistically significant when p < 0.05.

3. Results

3.1. MWM test

Our results demonstrated that scopolamine administration decreased the time spent to reach the platform and also the traveled distance to reach the platform in Sco group compared to control group (p < 0.01–p < 0.001) (Figure 1(A,B)). Treatment with all doses of Urtica extract decreased the time spent to reach the platform and also traveled distance to reach the platform compared to Sco group (p < 0.01–p < 0.001) (Figure 1(A,B)).

The results of probe trial showed that the time spent in target quadrant (Q1) in Sco group was lower than that in the control group (p < 0.01) (Figure 2(A)), while all doses of Urtica extract were able to increase the time spent in Q1 compared to Sco group (p < 0.05–p < 0.01) (Figure 2(A)).

In addition, scopolamine administration increased the time spent in the non-target (Q3) quadrant (p < 0.05), while different doses of the extract decreased the time spent in Q3 (p < 0.05–p < 0.01) (Figure 2(A)). Additionally, the traveled distance in target quadrant in Sco group was lower than the control group (p < 0.05). Only 100 mg/kg of Urtica extract was able to attenuate this effect of scopolamine and increase the time spent in target quadrant compared to Sco group (p < 0.05) (Figure 2(B)). Furthermore, scopolamine injection increased the traveled distance in non-target quadrants including Q2, Q3, and Q4 (p < 0.001), while all doses of the plant extract decreased the traveled distance in Q2 and Q3 (p < 0.01–p < 0.001) (Figure 2(B)). Additionally, both 50 and 100 mg/kg of the extract decreased the traveled distance in Q4 (p < 0.001); however, the lowest dose of extract did not affect this parameter (Figure 2(B)).
S. GHASEMI ET AL.

3.2. PA test

The results of PA test showed that scopolamine administration decreased the time latency for entering the dark room at 1, 24, and 72 h after the shock compared to the control group \(p < 0.01 \) (Figure 3(A)). Pretreatment by 50 and 100 mg/kg of Urtica extract increased the time latency at 1, 24, and 72 h after the shock compared to Sco group \(p < 0.001 \) (Figure 3(A)). Additionally, the time spent in a dark room in Sco group at 1, 24, and 72 h after the shock were higher than that in the control group \(p < 0.01 \) (Figure 3(B)). Treatment by 50 and 100 mg/kg of Urtica extract decreased the time spent in the darkroom compared to Sco group \(p < 0.01, p < 0.001 \) (Figure 3(B)). Injection of scopolamine also decreased the time spent in the lightroom after the shock compared to the control group \(p < 0.001 \) (Figure 3(C)). Treatment by 50 and 100 mg/kg of extract increased the time spent in the lightroom compared to Sco group \(p < 0.01, p < 0.001 \) (Figure 3(C)).

3.3. Biochemical results

3.3.1. Hippocampal tissues

Biochemical analyses of brain tissues showed that AChE activity in the hippocampal tissues of Sco group was higher than the control group \(p < 0.001 \), while treatment by all doses of Urtica extracts decreased AChE activity in the hippocampus compared to Sco group \(p < 0.005, p < 0.001 \) (Figure 4).

Scopolamine injection also increased MDA concentration in the hippocampal tissues of Sco group compared to control group \(p < 0.001 \) (Figure 5(A)). All doses of Urtica extract were effective to reduce this effect of scopolamine by decreasing MDA concentrations in the hippocampus compared to Sco group \(p < 0.05, p < 0.001 \) (Figure 5(A)). Scopolamine reduced total thiol concentrations in the hippocampus of Sco group \(p < 0.001 \) (Figure 5(B)), whereas different doses of Urtica extract improved total thiol concentrations in hippocampal tissues compared to Sco group \(p < 0.05, p < 0.001 \) (Figure 5(B)).
Results of this study also showed that scopolamine lowered SOD activity in the hippocampus of Sco group in comparison to the control group ($p < 0.001$) (Figure 6(A)). Both 50 and 100 mg/kg of Urtica extract increased SOD activity in the hippocampus compared to the Sco group ($p < 0.05$, $**p < 0.01$ and $***p < 0.001$ in comparison with Sco group).

Additionally, CAT activity in the hippocampal tissues of Sco group was lower than that in the control group ($p < 0.001$) (Figure 6(B)). Pre-treatment by all doses of Urtica extract increased CAT activity compared to Sco group ($p < 0.05$, $**p < 0.01$ and $***p < 0.001$ in comparison with Sco group).

3.3.2. Cortical tissues

Biochemical analyses of the cortical tissue showed that scopolamine administration was associated with an increased level of AChE activity in Sco group compared to control group ($p < 0.001$) (Figure 7). Treatment by 50 and 100 mg/kg of Urtica extract decreased AChE activity in cortical tissues compared to Sco group ($p < 0.01$), however, 20 mg/kg of the extract was not effective (Figure 6(A)).
planted extract was not significantly effective on cortical AChE activity (Figure 7).

MDA concentration in the cortex of Sco group was higher than the control group ($p < 0.001$) (Figure 8(A)). All doses of Urtica extract decreased MDA concentration in the cortex compared to the Sco group ($p < 0.05$–$p < 0.001$) (Figure 8(A)). Additionally, scopolamine injection reduced total thiol concentration in the cortex of Sco group compared to control group ($p < 0.001$) (Figure 8(B)). All doses of Urtica extract were able to attenuate this effect of scopolamine by increasing total thiol concentrations in the cortical tissues compared to Sco group ($p < 0.05$–$p < 0.001$) (Figure 8(B)).

In addition, SOD activity in cortical tissues of Sco group was lower than that of the control group ($p < 0.001$) (Figure 9(A)). Both 50 and 100 mg/kg of Urtica extract improved SOD activity in the cortex compared to Sco group ($p < 0.05$); however, the lowest dose was not significantly effective (Figure 9(A)). Furthermore, CAT activity in cortical tissues of Sco group was lower than the control group ($p < 0.001$) (Figure 9(B)). Treatment by 50 and 100 mg/kg of Urtica extract increased CAT activity compared to Sco group ($p < 0.001$); however, 20 mg/kg was not effective (Figure 9(B)).

4. Discussion

The present study confirmed that scopolamine administration adversely affects learning and memory capabilities of the rats as demonstrated in MWM and PA test results. MWM results showed that scopolamine administration prolonged the time spent and the traveled distance to reach the platform during 5 days learning period. It also reduced the time spent in the target quadrant in probe day when the animals were examined to recall the area of the platform. Moreover, the latency to enter the dark compartment of PA apparatus decreased in scopolamine-treated animals. Scopolamine administration was also associated with an increase in the time spent in the darkroom and a reduction in the time spent in the lightroom after the shock. These results confirmed previous findings of learning and memory-imparing effects of scopolamine (Jamialahmadi et al. 2013, Karimi et al. 2015, Hejazian et al. 2016). An increased level of AChE activity is accompanied with scopolamine-induced memory impairment (Lee et al. 2009, Kwon et al. 2010, Shi et al. 2010, Azizi-Malekabadi et al. 2012). Similarly, this study showed that scopolamine administration was associated with an elevation of AChE activity in both hippocampal and cortical tissues of scopolamine-treated rats. Additionally, previous studies demonstrated that scopolamine-impaired memory was accompanied with an elevated level of MDA concentrations and a decreased level of GSH in the brain tissue of scopolamine-treated rats, confirming an oxidative stress status in the (El-Sherbiny et al. 2003). Confirming previous findings, the results of the current study showed that scopolamine treatments result in an increase in MDA concentrations and a decrease in total thiol concentrations and SOD and CAT activities in both hippocampus and
cortex tissues. We have also previously confirmed that scopolamine-induced learning and memory impairment was accompanied with the brain tissues oxidative damages (Hosseini et al. 2015, Karimi et al. 2015, Mohammadpour et al. 2015, Hejazian et al. 2016). In line with our results, it has been previously shown that scopolamine increases lipid peroxidation and AChE activity in the brain (Goverdhan et al. 2012). Elsewhere, it was reported that the brain cholinergic system is involved in hippocampal neurogenesis and cognitive function by modulating neurogenic mechanisms, such as mechanisms related to brain-derived neurotrophic factor (BDNF) and cAMP response element-binding protein (CREB) (Bruel-Jungerman et al. 2011). Learning and memory impairments, which are associated with AD and aging, are also primarily related to cholinergic dysfunction, including impaired acetylcholine release and increased AChE activity in CNS (Ul Islam et al. 2017).

Moreover, the anti-oxidant agents such as ascorbic acid are reported to improve scopolamine-induced learning and memory deficits in mice via attenuating AChE activity and protecting the brain tissues against oxidative damages (Harrison et al. 2009a). We previously showed that some plant extracts, such as Nigella sativa and Rosa damascena, improve learning and memory and protect brain tissues against oxidative damages (Hosseini et al. 2015, Mohammadpour et al. 2015). Previous studies show the antioxidant effects of U. dioica (Namazi et al. 2012, Oguz et al. 2015). In the current work, we investigated the protective effects of U. dioica against scopolamine-induced learning and memory impairments. The results showed that all doses of the plant extract improved the time spent and traveled distance to reach the platform during 5 days of learning in MWM test. Plant extract administration also helped the animals to better recall the location of the platform, which was reflected in a longer time spent in the target quadrant. Also, treatment with U. dioica prolonged the delay time to enter the dark room and also the time spent in the light compartment, while decreasing the time spent in a dark room in PA test. Consistent with these results, another study showed that U. dioica improved depressive-like behavior and cognitive dysfunction induced by dexamethasone (Patel and Udayabanu 2014). In this study, we found that U. dioica extract decreased AChE activity in both hippocampus and cortex tissues. Similarly, another study demonstrated that U. dioica leaves extract had a potential to reverse spatial memory deficiency associated with streptozotocin-induced diabetes in mice. In the same study, it was observed that diabetes-mediated alterations in the muscarinic cholinergic system in the hippocampus and U. dioica extract improved memory functions (Patel et al. 2015). Moreover, it was reported that U. dioica extract was able to improve granule cell loss in the dentate gyrus of diabetic rats and ameliorated cognitive impairment in diabetes (Fazeli et al. 2008). In another work, a chemical compound of U. dioica, scopoletin, was able to increase acetylcholine secretion, leading to an improvement in hippocampal long-term potentiation (LTP), learning, and memory (Hornick et al. 2011). To better understand the possible mechanisms involved in U. dioica effects, MDA, total thiol concentrations, CAT, SOD, and AChE activities were evaluated in the hippocampus and cortex. The results of the current study showed that U. dioica extract decreased AChE activity in both hippocampal and cortical tissues. Similarly, another study revealed that U. dioica leaves extract attenuated hippocampal tissues oxidative damage and improved cholinergic system function in the brain of diabetic mice (Patel et al. 2015). Furthermore, the antioxidant activity of U. dioica was reported in (Alpinar et al. 2009). As shown in previous studies, U. dioica has inhibitory effects on fatty acid peroxidation and reducing free radicals. These properties make the U. dioica extract a powerful natural antioxidant material (Gülçin et al. 2004). In addition, it was shown that U. dioica leaf supplementation significantly reduced the level of free electron accumulation in several brain areas, such as the right frontal lobe, in rats (Pieroni et al. 2002). In conjunction with its antioxidant activity, the U. dioica extract was able to upregulate AP-1 and had anti-apoptotic and cell-survival supporting effects (Toldy et al. 2005). There is a strong link between learning and memory impairment, neuronal injury, and oxidative stress (Khodabandehloo et al. 2013). In addition, antioxidants have been frequently demonstrated to have some beneficial effects in prevention of memory impairment (Silva et al. 2004). We found that U. dioica extract administration reduced oxidative stress in both hippocampus and cortex tissues, which were reflected in a decreased level of MDA concentration and an increase in total thiol concentration and CAT and SOD activities. In another study, U. dioica treatment significantly attenuated oxidative stress in the hippocampus of streptozotocin-induced diabetic mice (Patel et al. 2015). The results of the present study may also confirm previous findings of protective effects of U. dioica-rich diet on N-methyl-d-aspartate (NMDA)-induced brain injury in Wistar rats, probably via reducing reactive oxygen species levels that were measured by electron paramagnetic resonance (Toldy et al. 2009). The compounds responsible for the learning and memory-improving effects of the U. dioica extract were not evaluated in this study. The major compounds of U. dioica are known to be scopoletin, quercetin, carvacrol, 5-hydroxytryptamine, acetylcholine, and choline acetyltransferase (Collier and Chesher 1956), which may be involved in the beneficiary effects of U. dioica on learning and memory; however, it needs to be more investigated.

5. Conclusion
Urtica dioica extract was found effective in dealing with learning and memory impairment induced by scopolamine. Protection against AChE activity and the oxidative damage of brain tissues was suggested as a possible mechanism involved in the beneficial effects of U. dioica on scopolamine-induced memory impairment.

Acknowledgements
The results described in this study were from 1 M.D. student’s thesis. The authors appreciate the Vice Chancellor for Research and Technology of Mashhad University of Medical Sciences for the financial support of this work.
References

Harrison, F.E., et al., 2009b. Vitamin C reduces spatial learning deficits in middle-aged and very old APP/PSEN1 transgenic and wild-type mice. Pharmacology Biochemistry and Behaviour, 93 (4), 443–450.

Hejazian, S.H., et al., 2016. Protection against brain tissues oxidative damage as a possible mechanism for improving effects of low doses of estradiol on scopoamine-induced learning and memory impairments in ovariecctomized rats. Advanced Biomedical Research, 5, 123.

